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Abstract: Packet dropping and modification are common attacks that can be launched by an adversary to disrupt 

communication in wireless multihop sensor networks. Many schemes have been proposed to mitigate or tolerate 

such attacks, but very few can effectively and efficiently identify the intruders. To address this problem, we 

propose a simple yet effective scheme, which can identify misbehaving forwarders that drop or modify packets. 

Extensive analysis and simulations have been conducted to verify the effectiveness and efficiency of the scheme. 

Keywords: Packet dropping, packet modification, intrusion detection, wireless sensor networks. 

1.      INTRODUCTION 

In a wireless sensor network, sensor nodes monitor the environment, detect events of interest, produce data, and 

collaborate in forwarding the data toward a sink, which could be a gateway, base station, storage node, or querying user. 

Because of the ease of deployment, the low cost of sensor nodes and the capability of self-organization, a sensor network 

is often deployed in an unattended and hostile environment to perform the monitoring and data collection tasks. When it is 

deployed in such an environment, it lacks physical protection and is subject to node compromise. After compromising one 

or multiple sensor nodes, an adversary may launch various attacks [1] to disrupt the in-network communication. Among 

these nodes, an adversary may launch various attacks [1] to disrupt the in-network communication. Among these attacks, 

two common ones are dropping packets and modifying packets, i.e., compromised nodes drop or modify the packets that 

they are supposed to forward.  

To deal with packet droppers, a widely adopted countermeasure is multipath forwarding [2], [3], [4], [5], in which each 

packet is forwarded along multiple redundant paths and hence packet dropping in some but not all of these paths can be 

tolerated. To deal with packet modifiers, most of existing countermeasures [6], [7], [8], [9] aim to filter modified 

messages en-route within a certain number of hops. These countermeasures can tolerate or mitigate the packet dropping 

and modification attacks, but the intruders are still there and can continue attacking the network without being caught. 

To locate and identify packet droppers and modifiers, it has been proposed that nodes continuously monitor the 

forwarding behaviours of their neighbours [10], [11], [12], [13], [14], [15] to determine if their neighbours are 

misbehaving, and the approach can be extended by using the reputation based mechanisms to allow nodes to infer whether 

a nonneighbor node is trustable [16], [17], [18], [19]. This methodology may be subject to high-energy cost incurred by 

the promiscuous operating mode of wireless interface; moreover, the reputation mechanisms have to be exercised with 

cautions to avoid or mitigate bad mouth attacks and others. Recently, Ye et al. proposed a probabilistic nested marking 

(PNM) scheme [20]. But with the PNM scheme, modified packets should not be filtered out en route because they should 

be used as evidence to infer packet modifiers; hence, it cannot be used together with existing packet filtering schemes. 

In this paper, we propose a simple yet effective scheme to detected both packet droppers and modifiers. In this scheme, a 

routing tree rooted at the sink is first established. When sensor data are transmitted along the tree structure toward the 

sink, each packet sender or forwarder adds a small number of extra bits, which is called packet marks, to the packet. The 

format of the small packet marks is deliberately designed such that the sink can obtain very useful information from the 
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marks. Specifically, based on the packet marks, the sink can figure out the dropping ratio associated with every sensor 

node, and then runs our proposed node categorization algorithm to identify nodes that are droppers/modifiers for sure or 

are suspicious droppers/ modifiers. As the tree structure dynamically changes every time interval, behaviours of sensor 

nodes can be observed in a large variety of scenarios. As the information of node behaviours has been accumulated, the 

sink periodically runs our proposed heuristic ranking algorithms to identify most likely bad nodes from suspiciously bad 

nodes. This way, most of the bad nodes can be gradually identified with small false positive. 

Our proposed scheme has the following features: 1) being effective in identifying both packet droppers and modifiers, 2) 

low communication and energy overheads, and 3) being compatible with existing false packet filtering schemes; that is, it 

can be deployed together with the false packet filtering schemes, and therefore it cannot only identify intruders but also 

filter modified packets immediately after the modification is detected. Extensive simulation on ns-2 simulator has been 

conducted to verify the effectiveness and efficiency of the proposed scheme in various scenarios. 

In the rest of the paper, Section 2 defines the system model. Section 3 describes the proposed scheme and Section 4 

reports the evaluation results. Section 5 discusses the related work, and Section 6 concludes the paper. 

2.      SYSTEM MODEL 

2.1 Network Assumptions: 

We consider a typical deployment of sensor networks, where a large number of sensor nodes are randomly deployed in a 

two dimensional area. Each sensor node generates sensory data periodically and all these nodes collaborate to forward 

packets containing the data toward a sink. The sink is located within the network. We assume all sensor nodes and the 

sink are loosely time synchronized [21], which is required by many applications. Attack resilient time synchronization 

schemes, which have been widely investigated in wireless sensor networks [22], [23], can be employed. The sink is aware 

of the network topology, which can be achieved by requiring nodes to report their neighbouring  nodes right after 

deployment. 

2.2 Security Assumptions and Attack Model: 

We assume the network sink is trustworthy and free of compromise, and the adversary cannot successfully compromise 

regular sensor nodes during the short topology establishment phase after the network is deployed. This assumption has 

been widely made in existing work [8], [24]. After then, the regular sensor nodes can be compromised. Compromised 

nodes may or may not collude with each other. A compromised node can launch the following two attacks: 

Packet dropping: A compromised node drops all or some of the packets that is supposed to forward. It may also drop the 

data generated by itself for some malicious purpose such as framing innocent nodes. 

Packet modification: A compromised node modifies all or some of the packets that is supposed to forward. It may also 

modify the data it generates to protect itself from being identified or to accuse other nodes. 

3.      THE PROPOSED SCHEME 

Our proposed scheme consists of a system initialization phase and several equal-duration rounds of intruder identification 

phases.  

 In the initialization phase, sensor nodes form a topology which is a directed acyclic graph (DAG). A routing tree is 

extracted from the DAG. Data reports follow the routing tree structure. 

 In each round, data are transferred through the routing tree to the sink. Each packet sender/ forwarder adds a small 

number of extra bits to the packet and also encrypts the packet. When one round finishes, based on the extra bits carried in 

the received packets, the sink runs a node categorization algorithm to identify nodes that must be bad (i.e., packet 

droppers or modifiers) and nodes that are suspiciously bad (i.e., suspected to be packet droppers and modifiers). 

 The routing tree is reshaped every round. As a certain number of rounds have passed, the sink will have collected 

information about node behaviors in different routing topologies. The information includes which nodes are bad for sure, 

which nodes are suspiciously bad, and the nodes‟ topological relationship. To further identify bad nodes from the 

potentially large number of suspiciously bad nodes, the sink runs heuristic ranking algorithms. 
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In the following sections, we first present the algorithm for DAG establishment and packet transmission, which is 

followed by our proposed categorization algorithm, tree structure reshaping algorithm, and heuristic ranking algorithms. 

To ease the presentation, we first concentrate on packet droppers and assume no node collusion. After that, we present 

how to extend the presented scheme to handle node collusion and detect packet modifiers, respectively. 

3.1 DAG Establishment and Packet Transmission: 

All sensor nodes form a DAG and extract a routing tree from the DAG. The sink knows the DAG and the routing tree, and 

shares a unique key with each node. When a node wants to send out a packet, it attaches to the packet a sequence number, 

encrypts the packet only with the key shared with the sink, and then forwards the packet to its parent on the routing tree. 

When an innocent intermediate node receives a packet, it attaches a few bits to the packet to mark the forwarding path of 

the packet, encrypts the packet, and then forwards the packet to its parent. On the contrary, a misbehaving intermediate 

node may drop a packet it receives. On receiving a packet, the sink decrypts it, and thus finds out the original sender and 

the packet sequence number. The sink tracks the sequence numbers of received packets for every node, and for every 

certain time interval, which we call a round, it calculates the packet dropping ratio for every node. Based on the dropping 

ratio and the knowledge of the topology, the sink identifies packet droppers based on rules we derive. In detail, the 

scheme includes the following components, which are elaborated in the following. 

3.1.1 System Initialization: 

The purpose of system initialization is to set up secret pairwise keys between the sink and every regular sensor node, and 

to establish the DAG and the routing tree to facilitate packet forwarding from every sensor node to the sink.  

Preloading keys and other system parameters: Each sensor node u is preloaded the following information: 

. Ku: a secret key exclusively shared between the node and the sink. 

. Lr: the duration of a round. 

. Np: the maximum number of parent nodes that each node records during the DAG establishment procedure. 

. Ns: the maximum packet sequence number. For each sensor node, its first packet has sequence number 0, the Nsth 

packet is numbered Ns -1, the (Ns+1)th packet is numbered 0, and so on and so forth. 

Topology establishment: After deployment, the sink broadcasts to its one-hop neighbors a 2-tuple h0; 0i. In the 2-tuple, 

the first field is the ID of the sender (we assume the ID of sink is 0) and the second field is its distance in hop from the 

sender to the sink. Each of the remaining nodes, assuming its ID is u, acts as follows: 

1. On receiving the first 2-tuple <v,dv>,  node v sets its own distance to the sink as du =dv+1. 

2. Node u records each node w (including node v) as its parent on the DAG if it has received <w,dw>  where dw =dv. 

That is, node u records as its parents on the DAG the nodes whose distance (in hops) to the sink is the same and the 

distance is one hop shorter than its own. If the number of such parents is greater than Np, only Np parents are recorded 

while others are discarded. The actual number of parents it has recorded is denoted by np,u. 

3. After a certain time interval,1node u broadcasts 2- tuple <u,du>  to let its downstream one-hop neighbors to continue 

the process of DAG establishment. Then, among the recorded parents on the DAG, node u randomly picks one (whose ID 

is denoted as Pu) as its parent on the routing tree. Node u also picks a random number (which is denoted as Ru) between 0 

and Np _ 1. As to be elaborated later, random number Ru is used as a short ID of node u to be attached to each packet 

node u forwards, so that the sink can trace out the forwarding path. Finally, node u sends Pu, Ru and all recorded parents 

on the DAG to the sink. 

After the above procedure completes, a DAG and a routing tree rooted at the sink is established. The routing tree is used 

by the nodes to forward sensory data until the tree changes later; when the tree needs to be changed, the new structure is 

still extracted from the DAG. 

The lifetime of the network is divided into rounds, and each round has a time length of Lr. After the sink has received the 

parent lists from all sensor nodes, it sends out a message to announce the start of the first round, and the message is 

forwarded hop by hop to all nodes in the network. Note that, each sensor node sends and forwards data via a routing tree 
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which is implicitly agreed with the sink in each round, and the routing tree changes in each round via our tree reshaping 

algorithm presented in Section 3.3. 

3.1.2 Packet Sending and Forwarding: 

Each node maintains a counter Cp which keeps track of the number of packets that it has sent so far. When a sensor node 

u has a data item D to report, it composes and sends the following packet to its parent node Pu: 

<Pu , {Ru, u, Cp MOD Ns, D,padu,0}Ku, padu,1>, 

Where Cp MOD Ns is the sequence number of the packet. Ru (0 _ Ru _ Np _ 1) is a random number picked by node u 

during the system initialization phase, and Ru is attached to the packet to enable the sink to find out the path along which 

the packet is forwarded. {X}Y represents the result of encrypting X using key Y . 

Paddings padu,0 and padu,1 are added to make all packets equal in length, such that forwarding nodes cannot tell packet 

sources based on packet length. Meanwhile, the sink can still decrypt the packet to find out the actual content. To satisfy 

these two objectives simultaneously, the paddings are constructed as follows: 

. For a packet sent by a node which is h hops away from the sink, the length of padu,1 is log(Np)*(h-1) bits. As to be 

described later, when a packet is forwarded for one hop, log(Np) bits information will be added and meanwhile, log(Np) 

bits will be chopped off. 

. Let the maximum size of a packet be Lp bits, a node ID be Lid bits and data D be LD bits. padu,0 should 

be Lp _ Lid * 2 _ log(Np) * h _ log(Ns) _ LD b i t s , where Lid * 2 bits are for Pu and u fields in the packet, field Ru is 

log(Np) bits long, field padu,1 is log(Np)*(h-1) bits long, and Cp MOD Ns is log(Ns) is log(Np)*(h-1) bits long, and Cp 

MOD Ns is log(Ns) bits long. Setting padu,0 to this value ensures that all packets in the network have the same length Lp. 

When a sensor node v receives packet <v,m>, it composes and forwards the following packet to its parent node Pv: 

<Pv,{Rv,m'}Kv>, 

Where m' is obtained by trimming the rightmost log Np bits off m'. Meanwhile, Rv, which has logNp bits, is added to the 

front of m'. Hence, the size of the packet remains unchanged. Suppose on a routing tree, node u s the parent of node v and 

v is a parent of node w. When u receives a packet from v, it cannot differentiate whether the packet is originally sent by v 

or w unless nodes u and v collude. Hence, the above packet sending and forwarding scheme results in the difficulty to 

launch selective dropping, which is leveraged in locating packet droppers. We take special consideration for the collusion 

scenarios, which are to be elaborated later. 

3.1.3 Packet Receiving at the Sink: 

We use node 0 to denote the sink. When the sink receives a packet <0,m'>, it conducts the following steps 

1. Initialization. Two temporary variables u and m are introduced. 

2. The sink attempts to find out a child of node u, denoted as v, such that dec(Kv,m) results in a string starting with Rv, 

where dec(Kv,m) means the result of decrypting m with key Kv. 

3. If the attempt fails for all children nodes of node u, the packet is identified as have been modified and thus should be 

dropped. 

4. If the attempt succeeds, it indicates that the packet was forwarded from node v to node u. Now, there are two cases: 

a. If dec(Kv,m) starts with <Rv, v>, it indicates that node v is the original sender of the packet. The sequence number of 

the packet is recorded for further calculation and the receipt procedure completes. 

b. Otherwise, it indicates that node v is an intermediate forwarder of the packet. Then, u is updated to be v, m is updated 

to be the string obtained by trimming Rv from the leftmost. 

Then, steps 2-4 are repeated. 

Algorithm 1. Packet Receipt at the Sink 

1: Input: packet <0,m>. 
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2: u =0, m' = m; 

3: has Succ Attemp = false; 

4: for each child node v of node u do 

5: P = dec<Kv,m'); 

6: if decryption fails then 

7: continue; 

8: else 

9: has SuccAttemp =true; 

10: if P starts with <Rv, v> then 

11: record the sequence number; 

12: break; 

13: else 

14: trim Rv from P and get 

15: u <-v, hasSuccAttemp =false; go to line 4 

16: if hasSuccAttemp= false; 

17: drop this packet; 

3.2 Node Categorization Algorithm: 

In every round, for each sensor node u, the sink keeps track of the number of packets sent from u, the sequence numbers 

of these packets, and the number of flips in the sequence numbers of these packets, (i.e., the sequence number changes 

from a large number such as Ns _ 1 to a small number such as 0). In the end of each round, the sink calculates the 

dropping ratio for each node u. Suppose nu;max is the most recently seen sequence number, nu,flip is the number of 

sequence number flips, and nu,rcv is the number of received packets. The dropping ratio in this round is calculated as 

follows: 

du =nu,flip *Ns + nu,max + 1 - nu,rcv 

nu;flip _ Ns þ nu;max þ 1 

Based on the dropping ratio of every sensor node and the tree topology, the sink identifies the nodes that are droppers for 

sure and that are possibly droppers. For this purpose, a threshold _ is first introduced. We assume that if a node‟s packets 

are not intentionally dropped by forwarding nodes, the dropping ratio of this node should be lower than _. Note that _ 

should be greater than 0, taking into account droppings caused by incidental reasons such as collisions. The first step of 

the identification is to mark each node with “+” if its dropping ratio is lower than _, or with “_” otherwise. After then, for 

each path from a leaf node to the sink, the nodes‟ mark pattern in this path can be decomposed into any combination of 

the following basic patterns, which are also illustrated by Fig. 1: 

. +{+}: a node and its parent node are marked as “+” 

. + - {-}*: a node is marked as “+,” but its one or more continuous immediate upstream nodes are marked as “_.” 

.-{+} : a node is marked as “-,” but its parent node is marked as “þ+” 

. -{-}: a node and its parent node are marked as “_.” 

For each of the above cases, we can infer whether a node 

1. Has dropped packets (called bad for sure), 

2. Is suspected to have dropped packets (called suspiciously bad), 
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3. Has not been found to drop packets (called temporarily good), or 

4. Must have not dropped packets (called good for sure): 

Case 1: +{+}. The node and its parent node do not drop packets along the involved path, but it is unknown whether they 

drop packets on other forwarding paths. Therefore, the sink infers that these nodes are temporarily good. For example, in 

Fig. 1a, node C and E are marked “+” and are regarded as temporarily good. A special case is, if a leaf node is marked as 

“+,” it is safe to infer it as good since it cannot drop other‟s packets. 

Case 2: + -{-}*. In the case, all nodes marked as “_”must be bad for to show the correctness of this rule, we prove it by 

contradiction. Without loss of generality, we examine the scenario illustrated in Fig. 1b, where node C is marked as “+,” 

and nodes E, F, and G are marked as “_.” If our conclusion is incorrect and node E is good, E must not drop its own 

packets. Since E is marked as “_,” there must be some upstream nodes of E dropping E‟s packets. Note that the bad 

upstream nodes are at least one hop above E, i.e., at least two hops above C. It is impossible for them to differentiate 

packets from E and C, so they cannot selectively drop the packets from E while forwarding the packets from C. Even if C 

and the bad upstream node collude, they cannot achieve this. This is because every packet from C must go through and be 

encrypted by E, and therefore the bad upstream node cannot tell the source of the packet to perform selective dropping. 

Note that, if a packet is forwarded to the bad upstream node without going through E, the packet cannot be correctly 

decrypted by the sink and thus will be dropped. Therefore, E must be bad. Similarly, we can also conclude that F and G 

are also bad. 

Case 3:-{+}. In this case, either the node marked as “-” or its parent marked as “þ” must be bad. But it cannot be further 

inferred whether 1) only the node with “_” is bad, 2) only the node with “þ” is bad, or 3) both nodes are bad. Therefore, it 

is concluded that both nodes are suspiciously bad. The correctness of this rule can also be proved by contradiction. 

Without loss of generality, let us consider the scenario shown in Fig. 1c, where node C is marked as “_,” and node E is 

marked as “þ.” Now suppose both C and E are good, and hence there must exist at least one upstream node of E which is 

a bad node that drops the packets sent by C. However, it is impossible to find such an upstream node since nodes F and G, 

and other upstream nodes cannot selectively drop packets from node C while forwarding packets from node E. Hence, 

either node C is bad or node E is bad in this case. 

Case 4: -{-}. In this case, every node marked with “-” could be bad or good. Conservatively, they have to be considered as 

suspiciously bad. Specifically, suppose v is the highest-level node that is marked as “_,” and u is its parent node. If u is 

the sink, v must be bad for sure; otherwise, both u and v are suspiciously bad. On the other hand, suppose v is a child of u 

and they are both marked as “_.” If the dropping ratio of u is larger than that of v by at least _ (i.e., dv < du and du _ dv > 

_, recalling that _ is a threshold used to tolerate incidental droppings), node u is bad for sure. Otherwise, both u and v are 

suspiciously bad. 

Based on the above rules, we develop a node categorization algorithm to find nodes that are bad for sure or suspiciously 

bad. The formal algorithm is presented in  

Algorithm 2. Tree-Based Node Categorization Algorithm 

1: Input: Tree T, with each node u marked by “+” or “-,” and its dropping ratio du. 

2: for each leaf node u in T do 

3: v <- u‟s parent; 

4: while u is not the Sink do 

5: if u,mark = „„+‟‟ then 

6: if v,mark = „„-‟‟ then 

7: b <- v; 

8: repeat 

9: e  <- v; 

10: v <- v‟s parents node; 
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11: until v.mark = „„+‟‟ or v is Sink 

12: Set nodes from b to e as bad for sure; 

13: else 

14: if v is Sink then 

15: Set u as bad for sure; 

16: if v.mark = „„+‟‟ then 

17: if v is not bad for sure then 

18: Set u and v as suspiciously bad; 

19: else 

20: if dv - du > _ then 

21: Set v as bad for sure; 

22: else if du - dv > _ then 

23: Set u and v as suspiciously bad; 

24: u <- v, v <- v‟s parents node 

3.3 Tree Reshaping and Ranking Algorithms: 

The tree used to forward data is dynamically changed from round to round, which enables the sink to observe the 

behaviour of every sensor node in a large variety of routing topologies. For each of these scenarios, node categorization 

algorithm is applied to identify sensor nodes that are bad for sure or suspiciously bad. After multiple rounds, sink further 

identifies bad nodes from those that are suspiciously bad by applying several proposed heuristic methods. 

3.3.1 Tree Reshaping: 

The tree used for forwarding data from sensor nodes to the sink is dynamically changed from round to round. In other 

words, each sensor node may have a different parent node from round to round. To let the sink and the nodes have a 

consistent view of their parent nodes, the tree is reshaped as follows. Suppose each sensor node u is preloaded with a hash 

function h(.) and a secret number Ku which is exclusively shared with the sink. At the beginning of each round i (i =1; 2; . 

. . ), node u picks the [hi(Ku) MOD np,u]th parent node as its parent node for this round, where hi(Ku) = h(hi-1(Ku)) and 

np,u is the number of candidate parent nodes that node u recorded during the tree establishment phase. Recall that node 

u‟s candidate parent nodes are those which are one hop closer to the sink and within node u‟s communication range. 

Therefore, if node u choose node w as its parent in a round, node w will not select node u as its parent, and the routing 

loop will not occur. Note that, how the parents are selected is predetermined by both the preloaded secret Ku and the list 

of parents recorded in the tree establishment phase. The selection is implicitly agreed between each node and the sink. 

Therefore, a misbehaving node cannot arbitrarily select its parent in favor of its attacks. 

3.3.2 Identifying Most Likely Bad Nodes from Suspiciously Bad Nodes: 

We rank the suspiciously bad nodes based on their probabilities of being bad, and identify part of them as most likely bad 

nodes. Specifically, after a round ends, the sink calculates the dropping ratio of each node, and runs the node 

categorization algorithm specified as Algorithm 2 to identify nodes that are bad for sure or suspiciously bad. 

Since the number of suspiciously bad nodes is potentially large, we propose how to identify most likely bad nodes from 

the suspiciously bad nodes as follows. By examining the rules in Cases 3 and 4 for identifying suspiciously bad nodes, we 

can observe that in each of these cases, there are two nodes having the same probability to be bad and at least one of them 

must be bad. We call these two nodes as a suspicious pair. For each round i, all identified suspicious pairs are recorded in 

a suspicious set denoted as 

Si ={<uj.vj>|< uj,vj>  is a suspicious pair and <uj,vj>=<vj,uj>} 

Therefore, after n rounds of detection, we can obtain a series of suspicious sets: S1; S2; . . . ; Sn. 



ISSN 2348-1196 (print) 
International Journal of Computer Science and Information Technology Research  ISSN 2348-120X (online) 

Vol. 3, Issue 2, pp: (765-776), Month:  April - June 2015, Available at: www.researchpublish.com 
 

Page | 772  
Research Publish Journals 

We define S as the set of most likely bad nodes identified from S1,S2, . . . , Sn, if S has the following properties: 

. Coverage. 8hu; vi 2 Si (i ¼ 1; . . . ; n), it must hold that either u 2 S or v 2 S. That is, for any identified suspicious pair, at 

least one of the nodes in the pair must be in the set of most likely bad nodes. 

. Most-likeliness. 8hu; vi 2 Si (i ¼ 1; . . . ; n), if u 2 S but v 62 S, then u must have higher probability to be bad than v 

based on n rounds of observation. 

. Minimality. The size of S should be as small as possible in order to minimize the probability of misaccusing innocent 

nodes. Among the above three conditions, the first one and the third one can be relatively easily implemented and 

verified. For the second condition, we propose several heuristics to find nodes with most-likeliness. 

Global ranking-based (GR) method. The GR method is based on the heuristic that, the more times a node is identified as 

suspiciously bad, the more likely it is a bad node. With this method, each suspicious node u is associated with an accused 

account which keeps track of the times that the node has been identified as suspiciously bad nodes. To find out the most 

likely set of suspicious nodes after n rounds of detection, as described in Algorithm 3, all suspicious nodes are ranked 

based on the descending order of the values of their accused accounts. The node with the highest value is chosen as a most 

likely bad node and all the pairs that contain this node are removed from S1; . . . ; Sn, resulting in new sets. The process 

continues on the new sets until all suspicious pairs have been removed. The GR method is formally presented in 

Algorithm 3. 

Algorithm 3. The Global Ranking-Based Approach1: Sort all suspicious nodes into queue Q according to the descending 

order of their accused account values 

2: S ; 

3: while Sn i¼1 Si 6¼ ; do 

4: u dequeðQÞ 

5: S S ^ fug 

6: remove all hu; _i from Sn i¼1 Si 

Step wise ranking-based (SR) method. It can be anticipated that the GR method will falsely accuse innocent nodes that 

have frequently been parents or children of bad nodes: as parents or children of bad nodes, according to previously 

described rules in Cases 3 and 4, the innocents can often be classified as suspiciously bad nodes. To reduce false 

accusation, we propose the SR method. With the SR method, the node with the highest accused account value is still 

identified as a most likely bad node. However, once a bad node u is identified, for any other node v that has been 

suspected together with node u, the value of node v‟s accused account is reduced by the times that u and v have been 

suspected together. This adjustment is motivated by the possibility that v has been framed by node u. After the 

adjustment, the node that has the highest value of accused account among the rest nodes is identified as the next mostly 

like bad node, which is followed by the adjustment of the accused account values for the nodes that have been suspected 

together with the node. Note that, similar to then GR method, after a node u is identified as bad, all suspicious pairs with 

format hu; _i are removed from S1; . . . ; Sn. The above process continues until all suspicious pairs have been removed. 

The SR method is formally presented in Algorithm 4. 

Algorithm 4. The Stepwise Ranking-Based Approach 

1: S ; 

2: while Sn i¼1 Si 6¼ ; do 

3: u the node has the maximum times of presence in S1; . . . ; Sn 

4: S S ^ fug 

5: remove all hu; _i from Sn i¼1 Si 

Hybrid ranking-based (HR) method. The GR method can detect most bad nodes with some false accusations while the SR 

method has fewer false accusations but may not detect as many bad nodes as the GR method. To strike a balance, we 

further propose the HR method, which is formally presented in Algorithm 5. According to HR, the node with the highest 
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accused account value is still first chosen as most likely bad node. After a most likely bad node has been chosen, the one 

with the highest accused account value among the rest is chosen only if the node has not always been accused together 

with the bad nodes that have been identified already. Thus, the accusation account value is considered as an important 

criterion in identification, as in the GR method; meanwhile, the possibility that an innocent node being framed by bad 

nodes is also considered by not choosing the nodes which are always being suspected together with already identified bad 

nodes, as in the SR method. The HR method is formally presented in Algorithm 5. 

Algorithm 5. The Hybrid Ranking-Based Approach 

1: Sort all suspicious nodes into queue Q according to the descending order of their accused account values 

2: S ; 

3: while Sn i¼1 Si 6¼ ; do 

4: u dequeðQÞ 

5: if there exists hu; _i 2 Sn i¼1 Si then 

6: S S ^ fug 

7: remove all <u,*> from Sn i=1 Si 

3.4 Handling Collusion: 

Because of the deliberate hop by hop packet padding and encryption, the packets are not distinguishable to the upstream 

compromised nodes as long as they have been forwarded by an innocent node. The capability of launching collusion 

attacks is thus limited by the scheme. However, compromised nodes that are located close with each other may collude to 

render the sink to accuse some innocent nodes. We discuss the possible collusion scenarios in this section and propose 

strategies to mitigate the effects of collusion. 

As the four cases described in Section 3.2, the attackers do not gain any benefit if the collusion triggers the scenarios of 

Cases 1 and 2. However, the attackers may accuse honest nodes if the collusion triggers the scenarios of Cases 3 and 4. 

By exploiting the rules used by the node categorization algorithm and rank algorithm, there are two possible collusion 

strategies to make the sink accuse innocent nodes. We use Fig. 2 as a general example to discuss the collusion scenarios. 

Horizontal collusion. If nodes B, C, and D are compromised and collude, they will drop all or some of the packets of 

their own and their downstream nodes. Consequently, according to the rules in Case 3, <A,B>, <A,C>, and <A,D> are all 

identified as pairs of suspiciously bad nodes. Since A has been suspected for more times than B, C, and D, it is likely that 

A is falsely identified as bad node. 

Vertical collusion. If nodes B and E are compromised and collude, B may drop some packets of itself and its downstream 

nodes, and then E further drops packets from its downstream nodes including B and B‟s downstream nodes. Note that, E 

cannot differentiate the packets forwarding/generating by B since they are encrypted by node A. Consequently, the 

dropping rates for B and its downstream nodes are higher than that for node A. According to Case 4, <E,A> and <A,B> 

are both identified as pairs of suspiciously bad nodes. Since A has been suspected for more times than B and E, it is likely 

to be identified as a bad node.  

To defeat collusion that may lead to false accusation, our scheme is extended as follows: 

The concept of suspicious pair is extended to suspicious tuple which is a nonordered sequence of suspicious nodes. Note 

that, a suspicious pair is a special case of suspicious tuple, i.e., suspicious 2-tuple. 

A new rule is introduced: for each round i, if there exists multiple suspicious tuples of which each contains a certain node 

u, <u, v1,1, . . . , v1,m1>  <u, vn,1, . . . , vn,m>, all these tuples should be combined into a single tuple without 

duplication. For example, if the original tuples are <u, v1>, <u, v2, v3>, and <u, v3>, these tuples will be replaced with 

<u, v1, v2, v3>, where each of the four nodes is suspected for only once. 

As to be shown in our simulation results, the above enhancement can deal with collusion at the cost of slightly degraded 

detection rate. 
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3.5 An Extension for Identifying Packet Modifiers: 

The proposed scheme can be extended for identifying packet modifiers. Particularly, it can be slightly modified so that the 

statistical en route filtering scheme (SEF) [6] and the interleaved hop-by-hop authentication scheme [7] can be deployed 

to filter the modified packets. Details are presented in Section 3.5 in the supplementary file, available in the online 

supplemental material. 

4.     PERFORMANCE EVALUATION 

The effectiveness and efficiency of the proposed scheme are evaluated in the ns-2 simulator (version 2.30). The detailed 

performance metric, methodology as well as the attack models are discussed in Section 4.1 in the supplementary file, 

available in the online supplemental material. 

The simulation results are presented in the supplementary file, available in the online supplemental material. We first 

study the impact of various system parameters on the detection performance from Sections 4.2.1 to 4.2.7 when there is no 

collusion. We then evaluate our proposed scheme under node collusion attacks in Section 4.2.8. 

To identify packet modifiers and droppers, it has been proposed to add nested MACs to address this problem in [20] and 

[25]. We compare our proposed scheme with the PNM scheme [20] regarding detection performance and communication 

overhead. Details are presented in Section 4.3 in the supplementary file, available in the online supplemental material. 

As the proposed scheme outperforms the PNM scheme in terms of detection performance and communication overhead, 

we further measure the computational overhead of the packet sending and forwarding scheme on TelosB motes, which are 

widely used resource-constrained sensor motes [26]. Details are shown in Section 4.4 in the supplementary file, available 

in the online supplemental material. 

5.      RELATED WORK 

The approaches for detecting packet dropping attacks can be categorized as three classes: multipath forwarding approach, 

neighbour monitoring approach, and acknowledgment approach. Multipath forwarding [4], [5] is a widely adopted 

countermeasure to mitigate packet droppers, which is based on delivering redundant packets along multiple paths. 

Another approach is to exploit the monitoring mechanism [10], [13], [14], [16], [17], [18], [19], [27]. The watchdog 

method was originally proposed to mitigate routing misbehaviour in mobile ad hoc networks [10]. It is then adopted to 

identify packet droppers in wireless sensor network [13], [27], [28]. When the watchdog mechanism is deployed, each 

node monitors its neighborhood promiscuously to collect the firsthand information on its neighbuor nodes. A variety of 

reputation systems have been designed by exchanging each node‟s firsthand observations, which are further used to 

quantify node‟s reputation [16], [17], [18], [19]. Based on the monitoring mechanism, the intrusion detection systems are 

proposed in [15] and [29]. However, the watchdog method requires nodes to buffer the packets and operate in the 

promiscuous mode, the storage overhead and energy consumption may not be affordable for sensor nodes. In addition, 

this mechanism relies on the bidirectional communication links, it may not be effective when directional antennas are 

used [30].Particularly, this approach cannot be applied when a node does not know the expected output of its next hop 

since the node has no way to find a match for buffered packets and overheard packets. Note that, this scenario is not rare, 

for example, the packets may be processed, and then encrypted by the next hop node in many applications that security is 

required. Since the watchdog is a critical component of reputation systems, the limitations of the watchdog mechanism 

can also limit the reputation system. Besides, a reputation system itself may become the attacking target. It may either be 

vulnerable to bad mouthing attack or false praise attack [30]. The third approach to deal with packet dropping attack is the 

multihop acknowledgment technique [31], [32], [33]. By obtaining responses from intermediate nodes, alarms, and 

detection of selective forwarding attacks can be conducted. To deal with packet modifiers, most of existing 

countermeasures [6], [7], [8], [9] are to filter modified messages within a certain number of hops so that energy will not 

be wasted to transmit modified messages. The effectiveness to detect malicious packet droppers and modifiers is limited 

without identifying them and excluding them from the network. Researchers hence have proposed schemes to localize and 

identify packet droppers; one approach is the acknowledgment-based scheme [24], [25], [34] for identifying the 

problematic communication links. It can deterministically localize links of malicious nodes if every node reports ACK 

using onion report. 
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However, this incurs large communication and storage overhead for sensor networks. The probabilistic ACK approaches 

are then proposed in [24] and [25], which seek trade-offs among detection rate, communication overhead, and storage 

overhead. However, these approaches assume the packet sources are trustable, which may not be valid in sensor networks. 

As in sensor networks, base station typically is the only one we can trust. Furthermore, these schemes require to set up 

pair wise keys among regular sensor nodes so as to verify the authenticity of ACK packets, which may cause considerable 

overhead for key management in sensor networks. Ye et al. [20] proposed a scheme called PNM for identifying packet 

modifiers probabilistically. However, the PNM scheme cannot be used together with the false packet filtering schemes 

[6], [7], [8], [9], because the filtering schemes will drop the modified packets which should be used by the PNM scheme 

as evidences to infer packet modifiers. This degrades the efficiency of deploying the PNM scheme. 

6.      CONCLUSION 

We propose a simple yet effective scheme to identify misbehaving forwarders that drop or modify packets. Each packet is 

encrypted and padded so as to hide the source of the packet. The packet mark, a small number of extra bits, is added in 

each packet such that the sink can recover the source of the packet and then figure out the dropping ratio associated with 

every sensor node. The routing tree structure dynamically changes in each round so that behaviours of sensor nodes can 

be observed in a large variety of scenarios. Finally, most of the bad nodes can be identified by our heuristic ranking 

algorithms with small false positive. Extensive analysis, simulations, and implementation have been conducted and 

verified the effectiveness of the proposed scheme. 
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